Cardiovascular Effects Induced by Linalool in Normotensive and Hypertensive Rats

Paulo J. C. Anjos^a, Aline O. Lima^a, Patrícia S. Cunha^a, Damião P. De Sousa^a, Alexandre S. C. Onofre^a, Thais P. Ribeiro^b, Isac A. Medeiros^b, Ângelo R. Antoniolli^a, Lucindo J. Ouintans-Júnior^a, and Márcio R. V. Santos^{a,*}

- ^a Department of Physiology, Federal University of Sergipe, São Cristóvão – SE, Brazil. Fax: (+55) 79 2105-6474.
- E-mail: marcio@infonet.com.br

 b Laboratory of Pharmaceutical Technology (LTF), Federal University of Paraíba,
 João Pessoa PB. Brazil
- * Author for correspondence and reprint requests

Z. Naturforsch. **68 c**, 181–190 (2013); received April 12, 2012/March 21, 2013

Linalool is a monoterpene alcohol and constituent of several Brazilian aromatic medicinal plants, popularly used against hypertension. Cardiovascular effects induced by linalool were evaluated. In normotensive rats, (δ)-linalool [1, 5, 10, and 20 mg/kg body weight (BW); intravenous (i.v.)]-induced hypotension was associated with tachycardia, which was attenuated by atropine (2 mg/kg BW) and N^{G} -nitro-L-arginine methyl ester (20 mg/kg BW), but was not modified after indomethacin (5 mg/kg BW) administration. In hypertensive rats, linalool [200 mg/kg BW; oral (v.o.)] reduced blood pressure without changing the heart rate. In intact rings of rat mesenteric artery precontracted with 10 µM phenylephrine, linalool (from $6.4 \cdot 10^{-6}$ to $6.4 \cdot 10^{-3}$ M) induced relaxations in a concentration-dependent manner $[E_{\rm max}]$ $(115 \ \partial \ 13)\%$] that were not changed after atropine administration $[E_{\text{max}} = (105 \ \partial \ 2)\%]$, and were not different from those obtained in endothelium-denuded rings precontracted with phenylephrine $[E_{\rm max}=(108\ \partial\ 7)\%]$ or 80 mm KCl $[E_{\rm max}=(113\ \partial\ 7)\%]$ or tetraethylammonium incubation $[E_{\rm max}=(105\ \partial\ 12)\%]$. Linalool $(1.9\cdot 10^{-3}\ {\rm M})$ antagonized the contractions induced by $CaCl_2$ ($3 \cdot 10^{-6} - 10^{-2}$ M) (maximal inhibition, 81%). Furthermore, linalool inhibited the contractions induced by 10 µm phenylephrine or 20 mm caffeine. In conclusion, these results demonstrate that linalool reduces blood pressure probably due to a direct effect on the vascular smooth muscle leading to vasodilation.

Key words: Linalool, Arterial Pressure, Vascular Smooth Muscle